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1. Introduction

The fractional calculus has allowed the operations of integration and differentiation to any

fractional order. The order may take on any real or imaginary value. This fact enables us to

consider the order of the fractional integrals and derivatives to be a function of time or some other

variable. Lorenzo and Hartley [1998] first suggested the concept of variable order (or variable

structure) operators. In this concept the order of the operator is allowed to vary either as a

function of the independent variable of integration or differentiation (t) or as a function of some

other (perhaps spatial) variable (y). In that paper a preliminary study was done on several
potential variable order definitions where the order was a function of the independent variable of

integration or differentiation (t), and initial properties were forwarded.

This paper explores more deeply the concept of variable order integration and differentiation
and seeks to create meaningful definitions for variable order integration and differentiation and to

relate the mathematical concepts to physical processes. Several candidate definitions are

developed and characterized. For these definitions operational methods are provided, and

example applications are shown. One of the important characteristics of these operators is the
manner in which the operator accounts for the order history (or order memory). Two types of

memory are attributed to the operators, first nh , is the fading memory of the overall operator, and
second is the memory related to the history of the order of the operator. This second type of

memory, called m,_, is found to be an important attribute of the operator. Measures of these types

of operator memory are presented.

From these candidate characterizations the concept of "tailored" variable order integration and

differentiation is evolved. By this we mean the ability to choose the form of the operator

definition to control how the operator deals with its own order history.

The concept of the (continuous) order distribution, where the order is distributed over

variables other than the independent variable was suggested by Hartley and Lorenzo [2000] and

an initial and important application of order distributions was made to the identification of
fractional order systems. In a related work Bagley and Torvik [2000] develop a special transform

for the solution of distributed order differential equations. The present paper looks at two forms

of order distributions and their applications to dynamic processes. Also, a variety of physical

problems that motivate interest in these areas are briefly presented. Finally, the paper defines

operators of multi-variable order and operators that combine the variable order and the order

distribution concepts.

*Distinguished Research Associate
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2. Motivation for Variable Fractional Order Operators

There is considerable potential physical motivation toward the creation and implementation of

the concept of variable order operators. A few possibilities will be mentioned here. From the field

of viscoelasticity (Bland 1960), the effect of temperature on the small amplitude creep behavior

(force/extension) of certain materials is to change the characteristics from elastic (spring-like,

q _ 0 ) to viscoelastic or viscous (damper-like, q _ -1 ). This relates to the expression

cD,-qr(r)--  (xo /2 II
where F is force and x is displacement. Experience (and experiments), typically, is based on

fixed temperature, but real applications may well require a time varying temperature to be

analyzed. Polymer linear viscoelastic stress relaxation was studied by Bagley (1991). This

process is described by fractional differential equations of order /3 for a given fixed temperature.

The paper shows a clear dependence of 13 on temperature for polyisobutlene and correlates the

fractional model and experiment. Further, it is indicated that fl order fractal time processes lead

to /3 order fractional derivative constitutive laws. Smit, W. and deVries (1970) studied the stress-

strain behavior of viscoelastic materials (textile fibers) with fractional order differential equations

of order a, with 1> ct > 0. They show, based on related experiments, t_ to be dependent on strain

level.

Gl/3ckle and Nonnenmacher (1995) studied the relaxation processes and reaction kinetics of

proteins that are described by fractional differential equations of order /3. The order was found to

have a temperature dependence.

Electroviscous or electrorheological fluids (Klass and Martinek) and polymer gels (Shiga) are

known to change their properties in response to changes in imposed electric field strength. The

properties of magnetorheological elastomers respond to magnetic field strength (Davis).

From the field of damage modeling, it is noted that as the damage accumulates (with time) in a

structure the nonlinear stress / strain behavior changes. It may be that this is better described with

variable order calculus. Finally, the behavior of some diffusion processes in response to

temperature changes may be better described using variable order elements rather than time

varying coefficients.

3. General Preliminaries for Variable Order Operators

3.1 Issues

This section presents several issues and characteristics that generally apply to the various cases

that will be considered in the paper. The basic research question, relative to variable order

operators, derives from the fractional differential equation

c Dq y(t) = f(t) (3.1.1)

and the inferred integral equation

c Dt q f(t) = y(t) (3.1.2)

Since q in the fractional calculus can take on any real (or complex) value, the question is asked,

"What is a desirable definition for the fractional integral when q is allowed to vary either with

t or y ?" More specifically, what is an appropriate definition for

c Dtq(t'Y)f(t) ? (3.1.3)

NASA/TM--2002-211376 2



The analysis that ff,llows is based on the Initialized Fractional Calculus (Lorenzo and Hartley,
2000). The Riemann-Liouville basis for initialized fractional order integration is

t

cDTq f(t)=cd_-q f(t)+qt(f ,-q,a,c,t)__(q);(t r)q-J f(r)dr +llt(f +-q,a,c,t), t >c, (3.1.47
_ C

where c is typically taken as zero, and _t(f ,-q, a, c, t) is the initialization function. Only variation

of q with t will be considered initially. Thus the problem becomes that of defining oDq(')f(t),

and determining the appropriate properties. A list of general properties, G1-G5+ follows.

3.2 G1-Form and Basis

With the exception of section 4.5, consideration will be limited to fractional integrals whose

forms are defined by

o d_-q(t)f(t) = -i (t - r) q(r'r)-I f(r)dr (3.2.1)

This eliminates from consideration, in this paper, such forms as

i322 
°dS(')f(t)= J ' ' ,hz(rt"

and many other possible forms which admittedly may be valuable. Some consideration of
variable order based on the Grunwald form of the fractional differintegral may be found in

Lorenzo and Hartley [ 1998].

3.3 G2-bfftiali:,ation of Variable Order Fractional bTtegrals
We consider an initialization period a <t <0, and require that f(t)=O for all t < a. For

terminal initialization we require that, for t >0, the initialized fractional integral starting at

t = 0 be a continuation of the fractional integral starting at t = a, thus

o o_-q(tl.f(t)=a OJ(t)f(t) t > 0, (3.3.1)

or in terms of the uninitialized fractional integral

0 d; q(t)f(t)+ Ig(f,-q, a,O, t)=, d_-"(')f(t). (3.3.2)

Therefore, we have

i (t_r)q/'.rl-t
r'(q(,, r))o

and

f(r)dr+gt(f,q(t,r_a,O,t)= f (t-,r)]](t_ t f(r)dr,

J r(q(r, rl)

Thus it is

function will always be the same as that of the operator.

t > 0. 0.3.3)

(, r)q(t,r)-I

qt(f, q(t, r), a,0, t) = J F(q(t,r))- {(r)dr" t > 0. (3.3.47

seen that regardless of the argument of q(t.r), the integrand of the initialization

3.4 G3-Convolution Integral and Impulse Response Function

It will be useful in the discussion that follows to

draw on the ideas of convolution and impulse

response as they relate to linear system theory.

Briefly, we consider the block diagram of a linear
system, figure 3.4-1, with input x(t),and output

y(t). The response of this system to a unit impulse Figure 3.4-1 System Block Diagram
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function8(t) is h(t) the impulse response function. The input, or forcing function, for this system

may be written as an infinite sum of impulse functions, 6(t),

x(t)= ix(r)6(t-z)dr. (3.4.1)

Now for a linear system, superposition holds. Then, each of the input impulses in x(t) will excite

a response in the output y(t) with a proportional strength and properly referenced in time to give

the response

y(t)= ix(r)h(t- r)dr. (3.4.2)

A causal system only responds after an input is applied, thus h(t)=0, fort <0. Furthermore,

h(t- r)= 0 for r > t, therefore we may express the response as the convolution integral
t

y(t)= I x(r)h(t-r)dr. (3.4.3)
0

Much more detailed discussion of these matters may be found in such texts as (DeRusso, Roy and
Close).

3.5 G4-Time Invariance

From conventional linear system theory, with fixed and integer order, it is well known, (and

important) that when the impulse response h(t, r)_ h(t-r) the system is said to be "time varying,"

that is, the coefficients of the derivatives in the associated differential equations are functions of

time (DeRusso). Fixed order operators (systems) are said to be time invariant if, when an input

f(t) produces a response y(t), then the input f(t+a) produces the response y(t+cr). Because

the result of variable order operation (differintegration) depends on two variables, the input f(t)

and the order q(t), this definition is inadequate for variable order operators. The concept will be

generalized for the domain of variable order operators.

A variable order operator will be said to be time invariant if an input f(t) and order profile

q(t) produce a response y(t), then the input f(t + cr)and an order profile q(t + cr) will produce the

response y(t + a ) .

3.6 G5-Linearit_,

For the form above, equation (3.2.1), all the operators are linear with respect to the input
f(t), that is,

__ l,.)q(t.r ).- 1 t r _]q(t.r}-Io F(q(t,r)) (afO)+bg(t))clr=aj O-r)q(''_)-'f(r)clr+bf(t-''f g(r)dr (3.6.1)
o r(q(t, r)) J0 r(q(t, r)) '

It is noted that the operators are not in general linear with respect to the order q(t,r), (i.e., q(t) as

an input). Hence, we will not in general have the composition property, i.e.,

0DT"(') 0 D?"(')f(t) = oDtU(')--"(')fq) • (3.6.2)

We will find that this is a peculiar aspect of variable order operators; it appears they can
simultaneously be both linear and non-linear!
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4. Toward Variable Order Operator Definitions: Variable Order Integration

4.1 Kernels and Arguments
We start by examining several Riemann-Liouville based variable order integrator definitions.

For fixed fractional order integration we have for the uninitialized fractional integral

<d, qf(t)- r(q)!(t r)' '.f(r)dr. (4.1.1)
c

When the order is allowed to vary with time, we write, taking c = 0

tf (! _ r )q(t.r l_ 1odtqlr) f(t)= _(_ f(r)dr, (4.,.2)d

0

or alternatively

where q* (t, r): q(t, t - r).

t r q(t.r)--I

(,): (,.r)"f(,# - r)dr.
(4.1.3)

In the discussion that follows we will look at the implications that result from various choices

for the arguments of q(t.r). It appears reasonable to assume that the arguments of q in the

exponent of (t-r)and in the gamma function, of equation (4.1.2) are the same, and that

assumption will be made. The following cases will be considered; q(t,r)= q(t), q(t,r)= q(r), and

q(t,r)= q(t -r). One approach will be to consider a step change in q(t) from one constant value to

another and to draw inferences relative to the character of the variable order integration operator

based on the behavior of the kernel h(t, r), where

h(t,r)= (t- r)q("rt-l (4.1.4)
F(q(t, r))

4.2 Case 1 q(t,r)_ q(t)

4.2.1 Time invariance

For this case we define

The associated impulse response here is

t

o d;q(t)f(t) = S (t - r) q(t)'-' .f(r)dr (4.2.1.1)
r(q(t))

0

h(t,T)=(f- r)q(')-i (4.2.1.2)
r(q(t))

Because the argument of q in the exponent of (t-r)is not a function of (t-r) it is seen that

h(t, r)_ h(t- r). Therefore, the associated dynamic system (the operator) is not time invariant.

We now limit consideration to 0 _<q < 1, and write

h(t,z)- l (4.2.1.3)
r(q(t)Xt - r )l-q(t) "

To examine the behavior of this definition we consider a step in q(t) at t = T_,,, figure 4.2.1, and

examine h(t,r)in the vicinity of the step. From this figure it can be seen that odtq(')f(t) under

this definition immediately "forgets" that, from time t = 0 to time t = q that the impulse response

NASAfrM--2002-211376 5



kernel)was h(t,,r)= (t,-2-) q.-I
r'(q,) and switches with no "memory" of q, to h(t2,r)=

for t_, > T,,.. Specifically all "memory" of ql is lost after a change in q .

/2 -- r)q2 -1

r'(q2)

25

15

O5

0
0

ql=0 75

/i

//,' i

h(q,vq_;./ i

-h(t2, , q2=0 15

11 tisw t2, T2 ,
Im0,. 0.J4 0 _6 0 _8 1 1.2 1_4 1.6 1_8 2

"_- integration variable

Figure 4.2.1-1 Kernel behavior for q(t, r)= q(t)

based definition

4.2.2 bfftializ.ed Operator

Now for starting time T, with t >T, >_Ts,, >0, and with f(t)=O. Vt <0 we have from the

general property G2

I" (/-r)q('}-I ,f(T)dr +tl/(f ,-q(t)LO,_,t), t> "1", (4 9 "_1)
r..DTqO)f(t) = j r(q(t)) "" .....

7",

or

T,

T, tD-q(t)f (']-_,,- JT,tf(l-r)q(')-l_ f(r)dT + i ('t-T)q(')'lO?(--_ .f(T)dr,

For the q(t) profile chosen this becomes

t T,

T,. Dtq(t) f(l) = I (/'-r)qz-I f(r)dr + f (t-r)q2-1 f(r)dr
T_ r(q2 ) o r(q2 ) '

t >_. (4.2.2.2 /

t > T2 . (4.2.2.3)

Clearly after the step change in q(t) all "memory" of qt is lost. That is, even the initialization

function, which is the last integral in equation (4.2.2.3), does not "remember" q]. In fact, all

initialization is as if the operator (system) was always operating at the current value of q.

Specifically, the properties of the operator shift instantaneously with q(t) and behave as though it

has always been operating with the current value of q.

NASA/TM--2002-211376 6



4.2.3 Physical Reali:,ation

We consider q to be a general function of

time, namely q = q(t). We start by allowing

q to change in a step-wise manner, more

specifically, in a piece-wise constant manner

that approximates q(t). The block diagram,

figure 4.2.3-1, may be used to represent this

form of time varyino fractional integration.

Here, the switches, Si, associated with each

constant qi integration, are normally open

and are sequentially closed for duration T

(initially finite) then opened again. In this

realization, all of the fractional integrators

start at time t = 0, run simultaneously and in

isolation of the others.

q2 I

+

• • 4-

Figure 4.2.3-1 Block diagram for physical

realization of q(t, r) = q(t ) based definition

The following then applies

Order Switch Interval Closed

qi S] 0<t< T

q2 $2 T < t < 2T

q3 $3 T < t < 3T

q, S,z (n - 1)T < t < nT

(4.2.3.1)

The order of fractional integration proceeds as ql ,q2, q3, '", that is, as a sequence of piecewise

q(r)
0 60

0 E2

0 6 q(._) ,

" .... " f(t)

05B " " I

054

0 52

06

0 48

046 I I I i L I
01 02 03 04 0"3 OE 07 08 09

t - Dummy T_me

Figure 4.2.3-2 Approximation of q(r), t = r = 1

constant-order fractional integrations. The qi approximate q(t) as indicated in figure 4.2.3-2. The

approach therefore is lo fractionally integrate first f(t) at order q_, then at order q2, and so on.

NASA/TM--2002-211376 7



The output of the process, y(t), then is given by

od, q'f(,)

0 d; q2 f(t)

y(/): odiq_ f(t)

od?q"f(t)

Thus for any particular increment we have

0<t< T

T<t<2T

2T<t<3T

(n-l)T <t <nT

(4.2.3.2)

-q' (4.2.3.3)y(t)=0dt f(t) (k-1)T<t<kr,

or

i (t - r)q'-1
"vO) = 0 -F'(-_k) f(r)dr (k-l)T<t<kT. (4.2.3.4)

It can be seen from equation (4.2.3.2) that the final value of q is used at any point in time, t.

Also, from the block diagram, figure 4.2.3-1, it is apparent that during the time that any switch S: is

closed, the output y(t) is as if qi had been in effect from the beginning. That is,

q=qk, for (k-l)T<t<kT, Vk. We now take the limit of equation (4.2.3.4) as T-_0, then the

stepped q_ -4 q(t), approach the.original function q(t), and on the left hand side of the equation, the

output of the process yO)---)odqft)f(t). On the right hand side as T --_ 0, n _ oo such that for k = n,

nT = t and we have as the definition for variable order integration for this type of process as

= i (t - r) q(t)-I
od;q(t) f(f)- ?_"_ f(T)d'c,

0

t>O. (4.2.3.5)

With the initialization included

where

o D;-q(t)f(') = od; -q(t )f(t)+ qt(f,-q(t_ a,0, t),

Ill(f '-q(t _ a'O' t )= i (f _,_ )q(t)-I f ('( )d'(
r(q(t))

a

t>0.

t>0, (4.2.3.6)

(4.2.3.7)

The principal characteristic of this definition is its distorted "memory," it always remembers the

past as if the order of the operator q is at the current time, that is, it has no q memory.

4.2.4 Operational Method q(t,'r)_ q(t)

Our interest here is to present a Laplace transform based procedure for dealing with

variable order fractional operators based on the definition using q(t, r)--> q(t) i.e., those based on

equation (4.2.3.5). All integrators (figure 4.2.3-1) operate continuously on the common input

f(t). The result of the individual (fixed order)integrations we will call x(q i, t). We observe

NASA/TM--2002-211376 8



and

x(qi' t)=°dtq_(t) f(')= i (t -'r) q'-I f(r)dr
r(qi)

0

0 < q(t)< m. (4.2.4.1)

L{x(qi,t)}= s -q_ F(s) (4.2.4.2)

In the limiting process the number of integrations becomes an infinite continuum and the

combined result may be viewed as a solution surface x(qO_t) that is progressively sampled as

q(t) increases. The solution then for the variable @)case is a path defined on this surface by q(t)

which may be considered as a function on a new dimension g. Because this definition has no

memory of past values of q we consider two time bases; t as applies in equation (4.2.4.1), and g

for the time varying order q(g). This allows us to describe the behavior of equation (4.2.4.1)

using an iterated Laplace transform. Specifically, we have

t_l {L,. {od_'q(rlJ f(l)_ = t,. I {_;-q(tl)f(s)}, (4.2.4.3)

L,. {L_{od_q(r')f(t)}}=L_, {_-q(">}F(s_ O<q(t)<m. (4.2.4.4)

In this formulation the iterated transform serves to order the procedure and after inverse

transforming we will set t t = t.

Example
Consider the variable order fractional differential equation

od_"+br)h*(t)=U(t), a>O,b>O, (4.2.4.5)

where it is desired to find the function h* (t)which when fractionally differentiated to the variable

ordera+bt yields the unit step function. Neglecting initialization, and remembering that

composition does not apply we will instead solve a related integral equation. Using the dual time

base, we write

Then tran.sforming we have

Using equation (4.2.4.4) above

(4.2.4.6)

(4.2.4.7)

s s

(4.2.4.8)

1 1

L,_,L_{h(t)}= •i+a si +bin(s)' Res, >-Re(bin(s)). (4.2.4.9)

Inverse transforming first with respect to s_ yields

+a -b tiL;{h(t)}= e -bOn_)r =s---------=s-(l+a+btt) Res I >-Re(bin(s)) (4.2.4.10)
l+a

S S

NASA/TM--2002-211376 9



Inversetransformingwithrespectto s, and replacing t_ by t, yields

ta+btl ta+bt

h(t)=r(l+a+btl)---_r(l+a+bt) " l+a+bt>O.
(4.2.4.11)

4.3 Case 2. q(t, r)= q(r)

4.3.1 Time lnvariance

For this case the variable order fractional integral is defined as

i (t --r) q(l" }--1dTq(t) f(t)=_

o ?(q--_ f(r)dr. (4.3.1.1)
o

The associated impulse response here is

h(t, r): (t - r) q(r)-' (4.3.1.2)

Because of the argument of q in both the exponent of (t-r) and in the gamma function it is seen

that h(t,r)_:h(t-r). Therefore, the associated dynamic system (the operator) is not time

invariant. Limiting consideration to 0 < q _<1, we write

h(t,r)- 1 (4.3.1.3)
F(q(r )Xt- r)l-q{_ )"

As in the previous case the behavior of this definition is studied by consideration of a step in q(t),

figure 4.3.1-1, and examination of h(t,r)in the vicinity of the step at t --/_,,..

2.5

15

05

[

--q;:0 /
/

/

/ h(t 2,_,ql )/'
/

h(t1 ,r-,q1 )./J
f,

h(t2 '_;'q2_ .......

tt Tsw

0.12 I I 1 1.12O0 04 0.6 0.8 t 2

t- integralionvariable

I

q2=O 15

1.4 1.6 1.18

1

Figure 4.3.1-1 Kernel behavior for q(t,r)=q(r) based definition

For q(t) as shown in the figure, we have for t = tI < Tsw

hl(t,r)= 1 0<r<t=tl "
r(ql Xtl - r) l-ql

(4.3.1.4)
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andfor t = te > T,,

h. (,,r)=,

1
0 < r < T_,,

l-'(q, Xt2 - r)'-"'

1

r'(q2 Xt_. -r) '-_'-' T.,, < r < t : ,.

(4.3. 1.5)

It can be seen that for t>T,,, the impulse response function is segmented, i.e., it is

discontinuous at T_,, as is q(t). This definition "remembers" the past q, namely q] in this case. It

is also apparent that memory of q_ decreases (relatively) as t > T_, increases. This behavior is a

key difference when this definition is contrasted with the definition of Case 1.

It is important to observe that under this definition

both ./and q are functions of r,i.e., f(r)and q(r).

When the operator is viewed as a dynamic system (block

diagram of figure 4.3.1-2) it is not unreasonable to expect

the "inputs" to have the same argument. It is interesting

that we have here, and for all variable order operators,

three terminal block diagram elements that explicitly

contain neither an addition nor a multiplication.

q(,)

r

Figure 4.3. I-2 Variable Order

Operator block diagram

4.3.2 Initialized Operator

From property G2, and for a starting time T, > T,w > 0 and for f(t)= 0 Vt < 0, we have

T,.Dtq(r)f(t)=i(t-_q(r)-lf(r)dr+_(f,-q(t_O, T2,t), t>r,

T,

T,

where _t(f,-q(t_O,T 2`t)= f (t-r)qlrM.f(r)dr For the q(t) profile chosen this becomes
r(q(r))

0

T'Dtq(rJf(t)=i(t-_:i-If(T)dr+Ti(t-r)q'-l"? J F(_I) -f(r)dr + )(l-[)q'--lf(T)dr,F(q2) t>T..

T_ 0 T_,

The sum of the last two integrals here is the initialization function for r: DTq(r)f(l) •

(4.3.2.17

(4.3 .... )

4.3.3 Physical Realization

We again consider q to be a general function of time, namely q = q(t). Again, we start by

allowing q to change in a step-wise manner, more specifically, in a piece-wise constant manner

that approximates q(t). The block diagram, figure 4.3.3-1, is used to represent this form of time

varying fractional integration. The switches, S_, associated with each constant q, integration, are

normally open and are sequentially closed for duration T (initially finite) then opened again. The

switches in this case are on the input to the individual operators, and have the effect of parsing the

dynamic input f(t). In this realization, all of the fractional integrators operate continuously from

time t =0until time t =t, that is, the end of the integration period. It is also noted that the

fractional integrators continue to generate output even after the parsed input function f(t)

becomes zero. The outputs are summed to form y(t).

NASA/TM--2002-211376 11



s(,)

Figure 4.3.3-1 Block diagram for physical

realization of q(t, r)= q(r)based definition

The following then applies

Order Switch Interval Closed

qi Sl 0<t< T

q2 $2 T < t < 2T

q3 $3 2T < t < 3T

q,, S,, (17- I)T < t < n T

(4.3.3.1)

The order of fractional integration proceeds as ql ,q2 ,q3,'", that is, as a sequence of

piecewise constant-order fractional integrations. The qi approximate q(t) as indicated in figure

4.2.3-2. The approach, therefore, is to fractionally integrate first f(tXu(t)-U(t-T)] at order q_,

then f(t)[U(t - T)-U(t- 2T)] at order q2, and so on.

(4.3.3.2)

The otltput of the process, y(t), then is given by

y(t ) = odTq(r)[f (t )((u(t )-u(t- V )))]+ odt-q(2r)[f (,)((u(t- r )-u(t- 2T)))]+ .-.+

i1

y(t)= £ odt'q(iT)[f(t){u(t-(i-l)T)-u(t-iT)}],
i=1

(4.3.3.3)

More briefly

y(t).=_i(t--T)q(iT}'-'
,=1 o F(q(iT)) [f(r){u(r-(i-1)F)-u(r-iT)}]dr.

(4.3.3.4)

or

NASAfI'M--2002-211376 12



Interchangingintegrationandsummationgives

y(t)= i_ (t-r)qlir}-I [ }T; ]dro i=1 F(q(iT)) f(r){U(r-(i-I -u(r-iT)}T . (4.3.3.5)

We now take the limit of this equation as n _,,_. On the right hand side T --_ 0 such that

t=nT. For clarity we introduce the dummy variable or, and iT--_(r, T _d(r, and

f(r)_f(iT)=f(a) q(iT)_q(cr)and the quantity {u(r-(i-1)l")-u(r-iT)}_ 6(r-_r) the unit
' T

impulse function and we have

r r (t r) q(O'}-I

y(t)=JJ _ f(cr)_(r-cr)dcrdr, (4.3.3.6)
0 0

Through the limiting process the left hand side becomes the desired variable order operator and
we have the definition for this case as

od_-q(')f(t) = i (t - r) q(r)-' f (r)dr (4.3.3.7)?(q-Tg
0

4.3.4 Operational Method

Here we seek an operational method for solving equations (systems) with variable order

fractional integrals based on the definition

r

°dqI'l f(t)=-- J r(q(r)) f(r)dr. (4.3.4.1)
0

It is useful to refer the block diagram, figure 4.3.3-1. Conceptually we will take the finite array of

fixed order integrators of order qi ,i = 1,2,...n to the limit to become an infinite continuum of

integrators. That is, an infinite array of fixed order fractional integrators of order q_ = q0_)where

A is allowed to take on all real values 0 < X < m < _,. We now convert .f(t) into a _ distributed

input, thus we define
x(A, t) = f(2t)6 0 -_,), (4.3.4.2)

as the input directly into the integrator (after the switchesl, and observe

x(_'t)={ f(t) A=0)t=t (4.3.4.3)

We further note that

x0

The output of the individual integrations, O0., t), is

o(z, t)=0 t),
and the integration over _ of these outputs will be

°drq(t} fQ)-_ f {_(_l''') dx _- I °dtq(A)x(_"l)d_!-

& Zo

(4.3.4.4)

(4.3.4.5)

(4.3.4.6)
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)*m

°dtq(t) f(t)= I °dTq(2) f(_')S(t-_')d_'"

;to

The Laplace transform with respect to t, with Laplace variable s, then is

L_{odTq(r)fO)}=L_ odtq(X).f(A)60-A)dA = e -s' odJ(X)f(X)60_A)dAdt.

o _o

Under appropriate conditions the order of integration is interchanged giving

A m

& o

(4.3.4.7)

(4.3.4.8)

(4.3.4.9)

Arn

L, {odrq(') f(t)}= f f(2 )s-q(Z)e-_ d2. (4.3.4.10)

&

At this point there are two possible paths, the first is to recognize that _ is a secondary time

base that we will call t Land write the time varying Laplace transform

I I- (t) t
Ls{odt q f( )}= I f(_.)s-q('t)e-;Ud)_. (4.3.4.11)

o

In application of equation (4.3.4.11) the order of solution is; inverse transform with respect to s.

integrate over 2, and replace t_ by t.

The second approach, is to take the Laplace transform with respect to 2 of equation (4.3.4.10),

taking )_o = 0, this gives

Ls, _Ls {odtq(t' f(g)_}= L L {f(j.)s-q(A)e-2S },
SI sl

(4.3.4.12)

[ Ls,{Ls{odTq(Df(t)}}=-_--if(_,)s-q(X)e-)'(s+s])d_,. I (4.3.4.13)
l0 [

In application of equation (4.3.4.13) the order of solution is; inverse transform with respect to s,

integrate over _, inverse transform with respect to s_ and replace fl by t.

Example

We now consider the same variable order fractional integral equation (4.2.4.6) of the previous
case, however now with the definition based on q(t,r)= q(r). Thus we seek to find the function

h(t), i.e., which is the variable (a+bt)order fractional integral of the unit step function. We

neglect initialization, and using the dual time base, we write the integral equation,

h(t)=odt("+bt_)u(t) .

Then applying equation (4.3.4.1 l) we have

t I

L_ {odT("+bt)u(t )}: L, lh(t)}: IU(_ )s-(a+b;t)e-_ d;L

o

t 1

Ls{hO)}=-sl-le-(bln(s)+s);td);,
o

(4.3.4.14)

(4.3.4.15)

(4.3.4.16)
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1____[1- e -.t,(s+b_(s))L,{h(t)}= s+bln(s) (4.3.4.17)

This result should be compared with that of the previous case equation (4.2.4.10), the forms are

found to be substantially different. Then the solution is given by

/[L-I J 1- e-g I_+/'ln(s)) 1]_ (4.3.4.18)h(t)=[ [ s"(s+bln(s)) 'l "--_ t

4.4 Case 3. q(t, r):: q(t - r)

4.4.1 Time bwariance

For this case we consider the definition

odfq(')f(t) = i (t - r) q('-r)-I f(r)dr (4.4.1.1)
,, F(q(t- r))

The associated impulse response here is

h(t, r)= (t- r) q('-r _1 (4.4.1.2)
F(q(t-r)) '

Because the argument of q in the exponent of (t-r)and in the gamma function is of the form

(t-r)it is seen that h(t,r)= h(t-r). Therefore, the associated dynamic system (the operator) for

this case is thne invariant, as defined in property G4 earlier.

We now limit consideration to 0 _<q _<1, and we write

1 (4.4.1.3)
h(t, r)= V(q(, - r))(, - r)l-q[t-r )"

We again examine the behavior of this definition by considering a step in q(t), figure 4.4.1-1,

and examining h(t,r)in the vicinity of the step at t = T_,. For q(t) as shown in the figure, we have

for t=q<T_,

h,(t.r)= 1 0<r<t=t,. (4.4.1.4)
F(q,Xt,- r) '-q' '

and for t = t. > T_,,

1 0< r <t-T,_,

h2 (t,r)= r(qz](tz-r)'-q'-
I

F(qt _(t2 -r) l-q' T,, < r < t = t 2

(4.4.1.5)

As in Case 2, it is seen that the impulse response function is segmented, i.e., it is discontinuous

at t,-T,_,.. This definition very strongly "remembers" the past q, namely ql in this case. This

effect is so strong thai if we consider the integral at time t = t_ where t, = T_, +e, fore small, we

have the situation where even though q has switched from qj to q2 the variable order integral is

almost completely evaluated at ql! This is a key difference when this definition is contrasted

with the definitions of the previous cases.
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0 "1 _w
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"_- integration variable

Figure 4.4. l-1 Kernel behavior for q(t, r) = q(t - r) based definition

15

05

4.4.2 Physical Realization

We again consider q to be a general

function of time, namely q = q(t). Again, we

start by allowing q to change in a step-wise

manner, more specifically, in a piece-wise

constant manner that approximates q(t). The

block diagram, figure 4.4.2-1, is used to

represent this form of time varying fractional

integration. The switches, S i , are now each

associated with a constant q,,-i integration.

It is seen that the sequence of integration

now runs backward relative to the switching

of the input function f(t). This necessitates

knowing the entire q(t) profile in advance.

The switches are normally open and are

sequentially closed for duration T (initially

finite) then opened again.

Figure 4.4.2-l Block diagram for physical

realization of q(t, r) = q(t - r)based definition

The switches in this case are on the input to the individual operators, and have the effect of

parsing the dynamic input f(t). In this realization, all of the fractional integrators operate

continuously from time t = 0 until time t = t, that is, the end of the integration period. It is also

noted that the fractional integrators continue to generate output even after the parsed input

function f(t) becomes zero. The outputs are summed to form y(t).
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Thefollowingthenapplies

Order Switch IntervalClosed
q,, S I 0<t< T

q,,__ S_ T < t < 2T

q,,___ S 3 2T < t < 3T

q2 S.., (n- 2_T <t < (n-l_

ql S, (11- I)T < t < nT

(4.4.2.1)

The order of fractional integration proceeds as qn, q,,-J "q,,-2, "", that is, as a reversed sequence

of piecewise constant-order fractional integrations. The qi approximate q(t). The approach

therefore is to fractionally integrate first f(t)[U(t)-U(t-T)] at order q,,, then

f(t)[U(t-T)-U(t- 2T)] at order q,,-l, and so on.

The output of the process, y(t). then is given by

y(t) = od;-"i"rl[f(t)((,,(t)-,,(t- T)))]+ od;-'tI("-'Vl[f(t )((u(t- T )-u(t- 2T)))]+ .-.+

od;qIT' [y(,)((.(,- (,,- l )- ,,O- ,,V)))]
More briefly

(4.4.2.2)

or

tl-I

Y(')= Z °d;q(("-irr)[f(t)_tO-iT)-uO-(i + i)T)}] .
i=0

(4.4.2.3)

V(t)= + tf (I-r)q((n-i)T)-I [f(r){u(r-iT)-u(r-(i + l_T)}]dr, (4.4.2.4)

Interchanging integration and summation gives

v(t)= i_ (t-r)q(("-irr)-I [f(r) {u(r-iT)-u(r-(i+l)T)}T]dr (4.4.2.5)
" ,,,=, F(q((n-i)l")) T "

We now take the limit of this equation as n --_ oo. On the right hand side T --_ 0 such that

t=nT, for clarity we introduce the dummy variable cr, and iT---_cr, T---_dcr, and

f(r)---) f(iT)= f(o'), q(iT)_ q(o') and the quantity _,(r-iT)-u(r-(i+ I)T)}___) 6(r-o') the unit
T

impulse function and we have

t t / "_q(t-a}-I

(4.4.2.6)
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Throughthelimitingprocesstheleft handsidebecomesthedesiredvariableorderoperatorand
wehavethedefinition for this case as

0¢-,,<,,/(,):(,-  )qU
- J0 r(qq-r)) f(r) dr.

(4.4.2.7t

It is apparent from this realization that the (t-r)argument of q effectively causes qto run

backwards in r ; that is, the entire q(t) profile must be "known apriori. Thus, for this definition,

q(t) appears to behave as an integral part of the kernel not as an "input" to the operator.

4.4.3 Initializ, ed Operator

Directly applying the G2 property, for the starting time t = 0 > a, and for f(t)= 0, Vt < a

the initialized operator is given by

or

o DTq(').fO) =- odr-q(t)f(t) + gt(f,-q(t_ a,O, t), t >0, (4.4.3.1)

o

oDTq(t)f(t)=-? (t-r)q('-r)-' f(r)dr+I(t-r)qU-rM f(r)dr, t>0, (4.4.3.2)
FTq(t_ ,, r(q(t- r))

Then for the test condition associated with figure 4.4.1-1 with the starting point of the integration

at 7", > T_, >0, and for f(t)=O, Vt < 0, we have fort _>T_

i ! -T_,. iD;q(t)f(t) =- (t-r)q(t-r)-' f(r)dl:+ f (t-r)q2-1 f(r)dr+ (t-T)ql-I

r, r(q(t- r)) V(q2) " F(ql)
r2 0 t- T_

where the sum of the last two integrals is the initialization function.

f(r)dr, (4.4.3.3)

4.4.4 Laplace Transform

The derivation of the Laplace transform of the variable order integral follows that for the fixed

order case, since the convolution theorem can be applied. Then, considering the uninitialized

case, i.e., od;-'rIt) f(t)= oD;-qtt) f(t),

L{oD;q(t)f(t)}= Ie -s' (t-r) q('-r)-'
o t ° F--'_--_)) f(z)dz t, q(t)>O,t>O, (4.4.4.1)

then the Laplace convolution theorem is given by

L{u(t)*v(t)}=U(s)V(s)= v(t - r)u(z)dr (4.4.4.2)

t q(t).-I

Now taking u(t)= f(t) and v(t)= _ = h(t)the convolution theorem yields

,{0D;ql,,i(,)}_- 1
U(s)V(s): L{f(t)}L]_ I. (4.4.4.3)

It is important to observe that under this definition q is fully associated with the kernel impulse

function i.e., q=qO-r), that is, the argument of q is the same as the (t-r) term that

it exponentiates. When the operator is viewed as a dynamic system, block diagram of
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figure4.3.1-2,it is notunreasonabletoexpectthe"inputs"tohavethesameargument.Thisis the
casewhenq(t,r)= q(r) but not so here.

4.5 Alternate Approach Variable Order Operator Based on Laplace Transform

The following approach uses an extension of the Laplace transform for fixed order operators to

infer a possible definition for the variable order operator. Neglecting initialization (or initial

condition terms), and assuming functions of exponential order, we note the following

Iis tL ....r(,,,)d,,,.-.d, =,-"r(,)
l o o

s -i F(s)

Thus, in general we have

L ,f(t) =s: F(s)

• f d" -1

(4.5.1)

L{odq.f(t)}= s qF(s), Vq. (4.5.2)

Now since L{cU(t)}= c/s, equation (4.5.2) may also be written as

L{odtq.fO)}= s_L{q}F(s), Vq. (4.5.3)

In this form qis of course considered as a constant. However, it is now a simple matter to

generalize q by considering it to be a function of time. Therefore, a Laplace transform based

definition for non-initialized variable order integration and differentiation is

(4.5.4)odqi')f(t)-L-l_'L{qtt)}F(s)}, Vq.

If it is assumed that the order requires no initialization then the definition for the initialized

operator is given by

oDq(t)f(t)=L-J{s._L{q(t)}F(s)}+_(f(t_q(t_O,a,s), Vq, t>0, (4.5.5)

where we require 0dq(')f(t) and q(t) to be of exponential order and piecewise regular. While this

unorthodox definition lacks a clear time domain meaning and realization, it is operationally

compelling and may find important application.
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5. Characterization of Variable Order Fractional Integrals

5.1 Generalizing the q-Argument

Through the study of the previous cases we have seen the behavior of three time-based

possible definitions for the variable order fractional integral operator. We have seen that the

operator based on q(t,r)--q(t) has no memory of past q, the operator based on q(t,r)=q(r)has

weak memory of past q, and the operator based on q(t,r)= q(t-r) has very strong memory of

past q. It is clear that the response of the operator to changes in q will be inversely related to its

memory of past q. These qualitative results are summarized in the table below, where a

generalized operator is defined based on

q(t,r)=q(at +bz), (5.1.1)

that is

dr-'_'(t)f(t) = ]" (t- r)q_'_r)-' f(r)dz. (5.1.2)
o " - _ r(q(at + br)) "

Case a b

1 1 0

2 0 1

3 1 -1

Relative q Memory Response to q Change

none immediate

weak intermediate

strong very slow

This summary suggests that the behavior of a variable order fractional integral operator might

be "tailored" to a particular application by suitable selection of the constants a and b in the
generalized form, equation (5.1.2). The rest of this section will create some tools that will be used
to evaluate such definitions and to characterize their behavior. The first task is to determine the

useable range for selection of a and b.

For the defining uninitialized operator, equation (5.1.2) above, the variable of integration r,

ranges as 0 <_r _<t. Therefore, we require that the argument of q also fall in this range, i.e.,

O< at +br < t. (5.1.3)

If the lower limit is violated q is not defined, violating the upper limit the operator is non-causal.

Examining the boundaries, from t =r we

have O<(a+b)t<t or 0<a+b<l. From the

condition r =0, we have, 0< at+0< t or

0 < a < I which together with the previous

condition yields -1 _<b < 1, constraints that are

preempted. The acceptable range of a and b

is shown in figure 5.1-1. Also shown on the

figure are the three cases analyzed previously.
It is noted that for certain non-real time

applications, such as digital filtering, it may be
desirable to relax the upper constraint,

i.e., causality, and allow the use the future

values of q. This has the effect of removing the

upper and right constraints in figure 5.1-1.

b

r)= q(r)

_/a+b<l

> a+b>O0__'/a a_q(t,r)=<_lq(t)

" ,,_ /Line of Input
q(t,r)= Timeq(t- r)"7"x_ Invariance

Figure 5.1-1 Allowable range
of q(at+br) argument
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5.2 Memories

Two types of memory are considered. The first type, m_, is the memory associated with the

integral operator itself. This is the so-called fading memory effect of the fractional integral when
compared to the integer order, q = 1, integral. A second type of memory, rn2, is that associated

with the change of order as we have indicated above. In the material that follows, the focus wilt

be on variable integrators of order q(t) bounded as 0 < q(t)< 1.

5.2.1 mj memory

This type of memory is the well understood fading memory of the fractional operation and
will be discussed only briefly. We first consider the fixed order fractional integral

(, r)q -1

od;qSO)= j (52.1I)
0

In this integral the past is described mathematically by (t-r)in the kernel. When r is small or

zero we are at or near the present, i.e.. t - r --4 t, conversely when r is large or approaches t in

magnitude we are in 1he distant past, i.e., t-r --40. Thus we integrate, fractionally, from the

present, r = 0 or t-r = t, to some point in the past, r = t or t-r = 0. The form of the kernel,

through q in the exponent and in the gamma function, determines how the past information is

weighted. The response of the integral for a unit impulse function at time t = 0 is

" =0)
,,#/fO) = j r(q) _(q)=h(q,t,r ,

0

which is the operator impulse response function. The effect of the fading memory may be

observed by comparing the response for fractional q, say after t = 1, to the integer order case

q = 1, which remains constant at a value of unity.

The impulse response function may,
therefore, be used as an indicator of

nh type memory. Thus, a primitive

measure of the memory of the fixed

order integral operator is the shifted

response

[ l_ql Jt__l

O__q_l, t__l. (5.2.1.3)

This measure is shown for the fixed

order fractional integral in figure 5.2.1-
1. When the order is variable with t,

(time) this measure shows a variation

with q(t). The following is an

alternative measure for the mI type of

1 I q-10

__ L K J J 3_6 _ 4'5 _[3 1'5 2 25 3 4 x, 55

I Time

Figure 5.2.1-1 m I - Memory measure

vs. time for fixed order fractional integrals

memory
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Hereweobserve,for f(t) = U(t) a unit step at t = 0, that the ratio

i (t -- "c )q(t't )-I

F(q(t, r)) U(r)dr ]"o _ 1 Q- r) q(t'r)-'l
Oil (/) _ Jt

t 0fU(r)dz F(-_'-_)) dr 0 < q(t,r)<- 1, (5.2.1.4)
d --
0

is essentially the same as expression (5.2.1.2) above when q is of fixed order. This measure

also shows variation when q is a function of time. These modified measures will show the

fading memory effect with variable q. Better measures of m_are certainly possible, but are

outside the scope of this paper.

5.2.2 m 2 memory

A more important memory type for the study of the "tailored" variable order fractional integral

is the m 2 type that is associated with memory of the order history. While the mI memory is meant

to be a measure of the retentiveness of the entire fractional integral, here we seek a measure of the

retentiveness of the order within the fractional integral after a change in order. Thus we consider

a step change in order from q_ to q2 occurring at time t=T_, as shown in figures 4.2-1, 4.3.1-1,

and 4.4.1-1. Setting f(t)= 1 eliminates the effects of changes in the input function. We define m 2

memory retentiveness as

rt (t- r)q'-'

r(q,) dr3
m_,(t)- r, = areaunder q, portionof h(t,r) O<qO, r)< 1, (5.2.2.1)

i O-r) q(r'rM area under h(t, r)
o r(q(,,r)) dr

where rl and r2 are the lower and upper bounds respectively associated with area under the qj

portion of h(t, r). Thus m 2 measures the strength or retentiveness of the memory of ql at time t

when t > T_.

This measure may be readily applied to the variable order definitions of Cases 1 to 3. It is

readily seen that for Case 1, q(t,r)= q(t), (refer to figure 4.2.1-1)

m2 (t)= {10 tt<T"'>T_, " (5 "_"_"_)'"-'-

Then for Case 2 above, q(t,r)= q(r), (refer to figure 4.3.1-1)

(,-r)q'-'
o r'(q,) dr

m2 (t)= T_ (t _ _.)q,_ 1 (t_r) q2-1

Jo _ dr+i r(q2) dr
Tr_

and for Case 3, q(t,r)= q(t-r), (refer to figure 4.4.1-1)

t > T_,., (5.2.2.3)
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_" (t-r)*'-' dr
J" r(q,)

m2(t)= T°, ,-To,

S ('- )q'-' ,T,,r(q,) dr + I (t- r)q-_-'?G) dr
t - T_, 0

t > T_,. (5.2.2.4)

The behavior of the m, -measure for these three cases is shown graphically in figure 5.2.2-l, and

thus the results discussed subjectively above, for these cases, have been quantified.

m2[li

o

07

@6

o 5

174

@3

ij 2

I]1 ]

0
05

5 .... -1Figure o o

q(t, r) = q(t), = q(r), = q(t - r)

135

Figure 5.2.2-2a m 2 (3) memory behavior for

"tailored" variable order fractional integrals

,0)=1 m2(3)=0 th,s ares* ..........

"'.

8

01 02 0'3 0_4 OL5 OB 07 08 09 1

a - Coeffctent oft

Figure 5.2.2-2b Contours of constant rn2 (I) memory

for "tailored" variable order fractional integrals

To examine the m, behavior for the "tailored" integrals, equation (5.1.2), we select a

particular value of t, say t = 3, in the m, -measure. This result m_. (3) versus a and b is shown in

figure 5.2.2-2a. This figure shows the variation in order retention (m_ memory) as the a and b
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parameters of the order q(a t + b'r) of the variable order fractional integral vary over the allowable

range. Figure 5.2.2-2b presents the same data as figure 5.2.2-2a but now as contours indicating

loci of constant values of m__(3). It is important to note that the contours are straight lines

emanating from the point (l/t,O)=(l/3,0). From such data one may select the desired properties

for the variable order integrals (and derivatives) for a specific application.

5.3 Dynamic Behavior: Response to q Changes
The responsiveness of the variable order fractional integral to changes in the order q is an

important consideration in the application of these operators. In general, the longer the memory of

past q, i.e., the greater its m, retentiveness, the slower will be the response of a particular

definition to a change in q. This effect as well as the responsiveness of the variable order

fractional integral to changes in the input function .f(t) will be illustrated in the application

section.

6. Variable Order Differentiation

The above definitions for variable order fractional integration may be formally extended to

variable order fractional differentiation in a manner similar to that done for constant q. For the

uninitialized case we define

odff(})f(t) - od; " odT"(t)f(t) t > 0, q(t)> 0, 'v't, (6.1)

where ,n is an integer such that, q(t)= m-u(t)_ and m > q(t)> O, Vt. Similarly for the initialized

case we formally define

o Dqb)fq)=-oD: 0DT"(t)f(t_ ' > 0, q(t)> 0, (6.2)

where q(t)= m-u(t _ and m is taken as the least integer greater than the maximum value of q(t).

Composition is inferred in the above definitions. However, the determination of a general

composition law for the variable order fractional integral may subject these definitions to later
reconsideration. Lack of a composition law increases the difficulty of analytical studies using the

definitions for both the variable order fractional integral and derivative, however, numerical
approaches are viable. Another complication is the fact that it may be desirable to allow q(t)to

range over both positive and negative values. This places an analytical "seam" at q = 0, requiring

the use of different definitions at each crossing, which may cause difficulties when using an

approach based on the Riemann-Liouville definition. Thus an approach based on the Grunwald
definition may be required. A consideration of the variable order differintegral based on the

Grunwald definition is presented in Lorenzo and Hartley, 1998.

The character of the variable order fractional differentiator will depend on the character of the
basis definition used for variable order fractional integration. That is, the memory and response
behaviors of the variable order fractional differentiator will mimic those of the basis variable

order fractional integrator definition. Thus for example, using the Case 1 definition q(t, r) _ q(t),

the fractional variable order derivative will have no memory of past order q and will behave in a

manner similar to the integer order derivative.
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7. Application of Variable Order Operators

The motivation section of this paper presents a number of potential application areas for the

variable order operators. The introduction and consideration of the "tailored" variable order

operators also allows application to a variety of adaptive filtering, detection, and modeling

applications. The scope of this paper does not allow detailed study of these. This section will
examine some simple applications to show some of the behavior of these definitions. To study the

response of the variable order fractional integral to a change in q(t) we start by holding f(t)= 1.

Figure 7-1 shows numerical results for the three basic cases studied earlier to a square wave

"input" of q(t). The m2 memory retention of past q is readily observed by comparison of the three

responses. For example, for the q(t,r)_ q(t) transient the switching between the constant

q = 0.75 and q--0.25 responses is obvious. A more detailed view of the response to a step

change in q(t)is shown in figure 7-2. Here attention is drawn to the response of the integral after

time t = 0.1, the effects of the q argument in the kernel become very apparent for the three cases.

We now consider a variable order integration with q(t)= 0.5 +0.35 sin(10zr t); then we have

"(t - r) ql''__j
J . (7.1)
t)

where again the three definitions of q(t,r)are applied. Figure 7-3 shows the results of these

variable order fractional integrations. It is observed that the Case 1 definition qO, r)_ q(t) result

starts out 180 degrees out of phase with the "input" of q(t) but then shifts to an in-phase response,

the Case 2 definition qO, r)_q(r) result remains 180 degrees out of phase with the "input" of

q(t) for the entire transient, while for the Case 3 definition q(t,r)_ q0-r) the sinusoidal effect

of q(t) is barely perceptible in the result.

The effect of the integrand is now considered. Figure 7-4 shows the results for f(t)= sin(6tr t)

while maintaining q(t)= 0.5 +0.35 sin(lOJr t). The Case 1 definition q(t,r) _ q(t) and the Case 2

definition q(t, r)_ q(r) results appear to be quite similar and have apparent frequency content at

the sum frequency sin(16:r t). Close examination of the difference of these two results however

shows content at the product frequency (not shown). For the Case 3 definition q(t,r)---)q(t-r),

the result follows the integrand with little, if any, phase shift.

That the integrand can interact with the order "input" is demonstrated in figure 7-5. Here again
the Case 1 definition q(t,3)_ q(t) and the Case 2 definition q(t,3)_ q(r) results appear to be

quite similar, both having significant harmonic content. The startling feature of this figure

however is the amplitude growth observed for the Case 3 definition q(t, r)_ q(t- 3) result.

The matching of the frequencies, apparently, allows energy to accumulate in the resultant
output of the integration. This is a resonant-like condition. It is also observed in figure 7-5 that

the q(t,r)= q(r) result is slowly ramping up, also an indication of energy accumulation. Thus, the

physical inference may be drawn that: varying the order requires (or yields) external energy.

NASA/TM--2002-211376 25



_ If(t')=l ......... I
O I I I I 1 I I I I I

10 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
_(t) ' _=./_ ....... |

0.5 '- , , q-- 15 _ , j
O I I I

2 {} 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
q(t ,1;)=>#q(t) .... ' _-.. _.---'1 I'-'_ J

o
2 0 0.,2 O. 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.,4 0,6 0.,8 1 1.2 1.4 1.6 1.8 220 0.,2 _) , , ,-
01_ "`- _1_ I I I I I I

0 u.2 04 0.6 0.8 1.2 1.4 1.6 18 2
I

1
t - Time

Figure 7-1 Variable order fractional integral responses
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Figure 7-2 Variable order fractional integral responses

for arguments q(t, r)= q(t), = q(r), = q(t- r), q(t) input is a step at t = 0.1
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8. Distributed Order Operators

8.1 Approaches to Distributed Order Operators

As in the case of time variable operators, because the order of the fractional integral and

derivative may take on any real value (or imaginary) we are allowed to consider variations of the

order with some variables other than time, say for example, space. This section explores the

distributed order operator. Two approaches are considered: a direct approach that does not assign

a new variable for the variation in order and an independent variable approach that considers q to

be a function of some independent (perhaps spatial) variable.

8.2 Direct Approach

The approach to be discussed here is a general mathematical method. However, to aid

understanding we will develop the concept around a reference mechanical system. The general

form for an element in such a system is

k odqy(t)=fO), (8.2.1)

where, q = 2 for an inertial mass, q = l for a dashpot, q = 0 for a spring, y(t) is the displacement

(response), and f(t) is the time varying force on the component. Other possible elements may

include 0 _<q < 1for various viscoelastic materials, and 1 _<q ___2 for viscoinertial elements. Thus

an assembly of such elements in parallel would be represented by

Z k7 (° dq' Y(t)+llti )= Z rio)'

i i

where V, = V(Y, q_, a,O, t) is the associated initialization for each element.

(8.2.2)
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Somematerialshaverheologicalpropertiesthatdependon temperature,electrostaticfield
strength[Shiga] or magnetic field strength [Davis]. Bagley (1991) discusses materials that display

complex thermorheological behavior. This means that the order of the viscoelastic element, q,,,

depends upon the temperature of the material. If a sample of this material is subject to a

temperature distribution, a corresponding order-distribution will exist throughout the material, as

each individual element will have its own order. In the limit as the elements approach differential

size this leads to the concept of the order-distribution. While this concept has been introduced

using a mechanical example, it is conceptually simple to jump from the summation in equation

(8.2.2) to the integral in equation (8.2.3) below. Assuming elements with orders that vary from

zero to two, the general mechanical system of equation (8.2.2), is replaced by an integral over the

system order,

2 2

f k(q) od_ I y(t)dq+ f k(q)llt(y,q,a,O,t)d q = .f(t), (8.2.31
0 0

where the first integral is named the cumulative order distribution over the range 0 < q < 2. With

k(ql being called the order-weighting distribution or the order strength distribution. In general we

will use the notation

q,

q,,q,__ _<(.t(k(q)L y,(t)_q)=- S k(ql _.d;Iy(t)dq, (8.2.4)

qk

for the cumulative order distribution, where the qin the argument of _ is the integration

variable. For the special limits this will be written as

l)<'(.,(k(q), y(t), q)=- Sk(q)<d q y(t)dq . (8.2.51
0

For convergence of the integral (8.2.3) we shall require that the integrand be bounded and that

k(qtbe non-zero only over a finite range. The second integral of equation (8.2.3) is the

cumulative order distribution initialization, and the forces have been combined into a single term.

The general notation for the cumulative order distribution initialization is
q,

q,.q, Vaq< (k(q_ Y(')_ q)= S k(q)llt(y,q,a,c,t )dq, (8,2.67

ql

The Laplace transform of equation (8.2.3), assuming the integral converges and is of

exponential order, is given by

/i / tk(q)s q dq Y(s)+ k(q)L(N(y,q,a,O,t))dq = F(s). (8.2.7)

Thus we now have a very general formulation for representing dynamic systems. Indeed the sum

of all orders of constant coefficient linear derivatives can be expressed as a single term!

To demonstrate that familiar equations can be written in this form, the common second order

mechanical system may be readily expressed using equation (8.2.7). Setting the initialization

integral to zero (or including it with the force), gives

nr(q-2) + btS(q-1) + kt_(q)]_ q dq Y(s) = F(s) , (8.2.8)
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or

(ms 2 + bs + k) Y(s)= F(s). (8.2.9)

The range of system order may be extended in both directions, then the general system

representation becomes

(8.2.10)

which has the time domain representation

ik(q) oDqy(t) dq = f(t), --_ < q < oo (8.2.11)

and k(q) is constrained to be non-zero only over a finite range to assure convergence of equation

(8.2.11 ). The forcing term on the right hand side of this equation may also be a cumulative order

distribution, giving the more general form,

(___k(q)sqdq]Y(s)=(_fg(p)sPdplF(s)-(_k(q)L(_(y,q,a,O,t))dql. (8.2.12)

This form contains all non-partial constant coefficient differential equations (both integer

order and fractional) when the lower integral limits are set to zero! With the limits as written, it

also includes all possible integral terms. Further extension to include time varying coefficients

may be obtained by replacing k(q) with k(q,t) in equation (8.2.11) and transforming

appropriately. The time domain solution is given by

y(t):L-']-" F(s) -L-t -__ k(q)$q dq f k(q_qdq

(8.2.13)

The analysis section considers some specific systems that can be represented by equation (8.2.10)

8.3 Independent Variable Approach

8.3.1 Definition

This approach to distributed order operators considers q as a function of some independent

variable x, (here considered to be spatial). Thus we have q = q(x) and k = k(x) and we consider

operators of the form

odq(x)f(t). (8.3.1.1)

For this differintegration q(x) is considered to be constant in the fractional operator (relative to

the t (time) based fractional integration). Operators of this form will be explored in more detail

in section 10 of this paper. The cumulative spatial order distribution then is defined as
B

a.Bf_q!7)(k(q _ f(t)_ x)-- f k(x) cdq(x) f(t)dx. (8.3.1.2)
,4
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Normallyweshalltakethelimitsof the x integration as 0 and ,,_, and assure convergence of the

integral by limiting k(x) to be non-zero only over a finite range of x. Taking c = O, we will write

for the cumulative spatial order distribution

_2q(x)(k(q_ f(t_x)- f k(x) od_t(O f(t)dx, (8.3.1.37
0

In this definition q(x) is considered to be constant in the fractional operator (relative to the time

based fractional differintegration). The general notation for the cumulative spatial order

distribution initialization is

B

,a,eu?q_O(k(q),.f(t_x)- f k(x)gt(f ,q,a,c,t,x)dv, (8.3.1.4)
,4

where the limits of the integral may be modified to suit the problem to be solved. From an

engineering or scientific view x might be the distance along some thermorheologically complex

material that is experiencing a temperature gradient. Thus at each point x the material responds

with a different order q(x) and spatial strength spectrum k(x). The application (figure 9-1 ) of the

next section shows such a situation. Extension to multi-dimensional cumulative (spatial) order

distributions is obvious

........ X )=-

I''' J* f k ('_':I' "¥2 *'"Xn )°dtq(xi'x2"x" )f(t)d'l(Id_(2 "'" _',i, (8.3.1.5)

0 0 [)

where again the limits may modified to suit the problem to be solved, and k is constrained to

assure convergence of the multiple integrations.

8.3.2 Laplace Transform

The Laplace transform of the cumulative order distribution (8.3.1.3), assuming that it is of

exponential order, is

= e -_' k(.r)odq(Of(t) drdt =n_ (k(q)_f(s)_x). (8.3.2.1)

0 0

Under conditions allowing the interchanging the order of integration, we have

or

IiL k(x) 0dq(x)f(t) dx = k(x) e-'todq("lf(t) dtd_, (8.3.2.2)

0 0

(8.3.2.3)
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Sinceq(x) is considered to be constant in the fractional operator, this becomes

L{f2qt(X)(k(q_f(t_x)}=L{ik(x)odq("Jf(g)dx}=ik(x)sq(X)dxF(s ) . (8.3.2.4)

In application it will be often desired to also transform in the x dimension, thus using s t as the

Laplace parameter with respect to x we have, limiting the integration range to x

Ls,{L,._2q(k,f,.r)}}=Ls, L s k(x) odq(')f(t)d_." =L._ k(.r)sq(_)dxF(s) , (8.3.2.5)

= 1 L,I _'(.v)s '(') }f'(s), (8.3.2.6)
S 1

It is interesting to compare this result to the variable order results equations (4.3.4.12) and

(4.2.4.4).

9. Analysis with Distributed Order Operators

It is useful to reconsider the transform of the cumulative order distribution, equation (8.2.5),

by rewriting the exponential in s. That is

L_q.t(k(q),y(t).q)}=L{ik(q),.dqy(t)dq}=ik(q)sqY(s)dq=ik(q)eqln(S)dqY(s ), (9.1)

This cumulative order distribution transform is effectively a Laplace transform of the function

k(q) with the new Laplace variable being r=-ln(s). As long as the order-distribution, k(q) is

such that the integral converges, the integral is easy to calculate by treating it as a Laplace

transform with Laplace variable (-ln(s)).

Consider the direct (approach) order distribution k(q)=U(q)-U(q-2), that is, a uniform

distribution of magnitude 1, between q = 0, and q = 2. The Laplace transform of k(q) from the

tables is

1 e -2q (9.2)

F F

Then replacing r by -In(s)gives

Ik(q)eqln(S_d q =ieqlnO)dq= l-e2tn(s) 1-s"
o o In(s) -In(s) ' (9.3)

for the transform of the distribution.

The tables of Laplace transforms can also assist in evaluating the integral on the right hand

side of equation (8.3.2.4). That is, if q(x)can be written as q(x)= -x+ r(x) then we may write the

transform as

L k(x)odtq(x)f(t)dx= f(s_ k(x)sq(x)d',f= F(s)Ieq(x)ln(')k(x ) dr= }dx. (9.4)

o o o

Then, provided _.r(x)ln(sJk(x)} is bounded and is of exponential order, its Laplace transform may

be determined from the tables and the Laplace variable replaced by In(s).
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Example application E. F(t )
This example demonstrates the application of _,,(t)

distributed order operators to obtain the analytical [ ]
solution of the behavior of a viscoelastic material

with spatially varying properties. WE consider a T(x)_ _¢ _q(x)

plate constructed of thermorheologically complex L _1_
subjected to a temperature gradient T(x) --__-'(t)

o

andmaterialtoaforce F(t). Thus, the order q varies with /l _.__[ _ ]
temperature and therefore with the spatial _,
dimension x. A free body diagram showing the (t)

distributed parameters is presented ill figure 9-1. _ I
!

For any constant temperature element, the .._ [ ]

elemental stress- strain relationship [Hilfer p.351] +F(t)
is given by

q_y(t)= Er"odr e(t ), (9.5)
Figure 9-1 Free body diagram

for viscoelastic plate

where _ (t) is the applied stress and e(t) is the resulting strain, q is the fractional order, with

0<q<l, and E and r are material properties. Setting kq = Er q we write for each incremental

element and for a unit area

J. 1 q
e i (t)=7"-o D_ 'F(t). (9.6t

kq_

Then the total strain for the plate will be
_7 n

i=1 i=1 qi

We will assume that the spatial temperature variation affects the order q such that q = c+ d x,

and in the limit as n -_ oo, we have
/

This is an initialized cumulative order distribution in terms of the independent variable x. For

simplicity and clarity in this example, we will assume an initialization _, = 0, and ! ; 1. Then

taking the Laplace transform we have

1

e(s)=!_L{od_(C+a")F(t)}dx. (9.9)

Again for simplicity we will assume for this example that E and r q are unchanged by the

temperature gradient, by taking kq (x) = 1. Evaluating the transform gives

1 l

e(s)= _ s -(c÷_X) F(s)d x= _ s-('+dx)d_ F(s). (9.10)
0 0
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Performing the integration with F(t) taken as a unit step function, i.e., F(s)= l/s yields after

some algebra

s TM In(s) s _+'+° ln(s) '

The inverse transform may be found from the tables of transforms [Erdelyi, vol. 1, p.251 ] and the
time domain solution is the sum of two Volterra type functions, thus

e(t)= r(p + c - r(p + c + a + "
c I c +1

(9.12)

10. Operators of Multivariable Order and Distributed Variable Order

10.1 Multivariable Order Operators

In the past sections we have seen the order of fractional order operators vary with time and

distributed over a (spatial) dimension x. We will now assign meaning to operators of the form

o Dq(t'Of(t), with order a function of multiple variables and combine the variable order and order

distribution operators. We start by limiting consideration to uninitialized operators for clarity of
discussion. Thus we define

°dtq(")f(t)--i (t-r)q(')-' f(r)dr, q > O, (lO.l.l)
o F(q(x))

where the integral is to be evaluated with the variable x treated as a constant. This definition

would be used in applications where the order is an independent function of the (spatial) x

dimension. An example might be to describe the local properties of a plate composed of different

viscoelastic materials stacked along the x dimension, where each material has different (spatial)

order properties. This definition is readily extended to multiple independent dimensions as

odTq(_'"":"''"')f(t) =- - "i(t-r)q(-''_:_-A')-I f(r)dr, q >0, (10.1.2)
o F(q(x,,xz,...x,,))

with each dimension treated as a constant. Application here generalizes the example above. That
is to describe the local material properties for a viscoelastic solid composed of a three

dimensional lay-up of thermorheologically complex materials and subjected to a temperature
gradient T(x). Thus, the order q varies with temperature and therefore with the x, y, : spatial

dimensions along which each material has different order properties.

For the above definitions the fractionally integrated function f(t) may also be generalized in

an obvious way to be a function of x1, x 2,...x,,t by use of the concept of the partial fractional

integral. In this concept the function variables x_,x2,...x,, are treated as a constants in

f(xl,x2,...xn,t ). The interested reader is referenced to Samko [1987 p.459] for discussion of the

fixed order partial fractional integral.

The (time) variable order fractional integral has been defined as (equation (4.1.2))

°dtq(t) f(t)= -i (t-r) q(t'r)-I f(z)dz, q > O,
0 r(q(t,r))

(10.1.3)

NASAJTM--2002-211376 34



where for the "tailored" case we take q(t,r)=q(at+br) with a and b set by the application

requirements.

We now combine the t, (time) and x, (space) variable order operators and define

('-r)q(''(r'r))-' f(v)dr 0. (10.1.45

where again x is taken as constant under the integration, and the notation (t, r) refers to the t,

(time), variable order relationship as developed in section 4.0, e.g., (t, r)_ (at+b r). Application

here might be to a viscoelastic solid composed of different complex thermo-viscoelastic materials

along the x dimension, where each material has different order properties, and those properties

vary with a time varying temperature. For example let us assume the transient behavior relates as

functions of (t-r), temperature is linear with time and baseline properties are linear (and

independent) along the x dimension then q(x,(t-r)) might be written as q(x,(t-rS)= q(cx(t-r)).

Extension of equation (10.1.4) to multiple dimensions yields
I

": ""(r(,) ¢ (t-r)dt-q (_1 ,f(r)dr . (lO.1.55
o

as the general uninitialized definition. The initialized definition is a direct application of property

G2, thus for locally independent histories

oDt q('h'x'-........."')f(t)_od; q('_'': ......"")f(t)+qt(f,q(xl.x 2,...x,,.t_ia,O,t), t > O, q > O, (10.1.6)

where

..... (q ...x )

The generalized variable order fractional derivative is defined as a generalization of equation

6.2, thus we define

_q(._.v,...._,,.t) r[_= r_m r_-.._,._ ...... _,,.t) ,eft _
OUt - ,IVP"-OUI O_t " .1 V _"

where q(:rj,x2 ..... t)=m-U(Xl,X2 ..... t),and m is taken as

maximum value of q(.q, x z ..... t).

the least

t>0, q>O, (10.1.8)
integer greater than the

10.2 Distributed Variable Order Operators

The variable order and the order distribution operators may be combined to allow order

distributions based on variable order operators. In a physical sense we are typically discussing

time varying order distributions over some spatial extent. We limit discussion here to

uninitialized operators for clarity. Then combining the results of equations (6.1) and (8.2.4) it is

reasonable to write for the variable order direct approach cumulative distribution

q.,

q,.q,_'2q}[)(l,'(q_ y(t)_q) = f k(q) jq(t)y(t)dq, (10.2.1)

ql

or

q2 t

,,, k "q,.q f.)q}[)(k(q_. ( _q)= I (q)°d'/'I O-r)"('x)-I v(r)dr dq .

ql C

(10.2.2)
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where q(t)= m-u(t), and the argument of u of the inner integral is selected as discussed in earlier

sections. In similar manner the variable order independent variable (spatial) cumulative

distribution is obtained by combining equations (6.1) and (8.3.1.2) and is given as
B

a.8 Y2q!/'")(k (q_ f(t _ x 7=-f k(x)<dql'") f(, )dx. (10.2.37
A

Alternatively using the form of equation (8.3.1.3) we have

_2q(x")(k(q), .f(t_ x)- f k(x) odq('") f(t)dr, (10.2.4)
0

In terms of the Riemann-Liouville formulation this is written

f(r-.,
f]q(.,..,)(k(q_ f(t_x)=ik(x ) ' _'v,(_.(,.r))-,o o-, j d.,-. 00.2.5)

where q(t,x)=m-u(x,t) and the argument of u of the inner integral is selected as discussed in

earlier sections. Then, for example using the Case 3 definition, for variable order fractional
integration, i.e., q(t,r)= q(t-r), equation (10.13)becomes

(t- r)
_q<x">(k(q_f(t_x)=Sk(x)od;" ) i__,_ .f(r)dr da. (10.2.67

0 0

In this case the Laplace transform may be written, using the result of equation (4.4.4.3), as

r ,o,.,):
0

where all initializations are assumed to be zero. Such formulations, as equations (10.2.5) or
(10.2.7) may be applied to advantage. For example the viscoelastic problem associated with

figure 9-1 could be subject to a time vao,ing temperature, the form of equation (10.2.5) or its
transform may be applied directly to determine the time varying cumulative strain for this

complex system. To be determined for such a problem however, is which time variable order
argument q(t,r) best describes the transient physics.

The spatial strength spectrum may be time varying, i.e., k(x)-_ k(x, t), also the integrand (input

force) may be spatially distributed, i.e., f (t)---) .f (t, x) then equation (10.2.5) generalizes to

D [(x't t(k (x, t), f(x, t), x)= ik(x, t) odq('"<)f (x, t)dx. 00.2.8)
0

This form requires treating the fractional derivative (or fractional integral) as partial fractional

derivative (or fractional integral); that is, taking x as a constant under the fractional operation.

11. Summary

This paper introduces the concepts of variable order fractional integration and differentiation

where the order is a function of both time, t, and space, x. The variable order fractional integral

is shown to allow considerable freedom in the argument of q, the order, which may be utilized to

advantage in a variety of applications. The argument of q is also shown to control the manner in

which the operator "remembers" the order history. Two types of memory measures have been

shown. The first relates to the well understood, fading memory of the fractional operator, while

the second type gives insight to the manner in which the variations in order within the operator
are remembered. Measures have been introduced to quantify the memory effects.
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Physicalmodelsfor thethreeprimarycasesof variableintegrationhavebeenshown.More
significantlyoperationalmethodshavebeendeterminedfor thethreeprimarycasesandsome
applicationsof themethodshavebeenshown.Extensionfrom theprimarycasesto "tailored"
operatorswasdeveloped,andsomepropertiesof thesetailoredoperatorshavebeenshown.
Furtherresearchin thisareais neededto deriveageneraloperationalmethodthatappliesto all
thetailoredvariableorderdifferintegrals.

Initializationofthevariableorderoperatorshasbeenshown.

Thefactthatthevariableorderfractionaloperatoris linearwith respectto theinput,.f(t), and
nonlinearwith respectto q when order is considered as an input presents both problems and

opportunity. The problem is the loss of the conventional composition law, which increases

analytical difficulty. Until generalized composition laws are evolved for the variable order

differintegral, the analyst is left primarily with numerical approaches. On the positive side, the
dual linear / nonlinear nature of the operator may enable progress in the area of nonlinear

systems.

Two approaches to distributed order fractional operators have been presented. This distributed

operator effectively combines all linear constant coefficient derivatives into a single operator.
Laplace transform operations with distributed order operators have been derived and a

viscoelastic strain application with a temperature gradient is shown.

Finally, operators of multivariable order have been defined generalizing the variable order

operators. Further, the effect of (time) variable fractional differentiation has been introduced into
the order distribution, increasing its applicability. It is the author's belief that very many

applications will be found for the new variable and distributed order operator definitions,
forwarded here, in engineering and the sciences.
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